Tribute to Pioneer of long distance Radio communication, Guglielmo Marconi on his 145th birth anniversary.

Guglielmo Marconi, (25 April 1874 – 20 July 1937) was an Italian inventor and electrical engineer, known for his pioneering work on long-distance radio transmission, development of Marconi's law, and a radio telegraph system. He is credited as the inventor of radio and he shared the 1909 Nobel Prize in Physics with Karl Ferdinand Braun "in recognition of their contributions to the development of wireless telegraphy"
Marconi was also an entrepreneur, businessman, and founder of The Wireless Telegraph & Signal Company in the United Kingdom in 1897 (which became the Marconi Company). He succeeded in making an engineering and commercial success of radio by innovating and building on the work of previous experimenters and physicists. In 1929, Marconi was ennobled as a Marchese (marquis) by King Victor Emmanuel III of Italy, and, in 1931, he set up the Vatican Radio for Pope Pius XI.
Marconi was born into the Italian nobility as Guglielmo Giovanni Maria Marconi in Bologna on 25 April 1874, the second son of Giuseppe Marconi (an Italian aristocratic landowner from Porretta Terme) and his Irish/Scot wife Annie Jameson (daughter of Andrew Jameson of Daphne Castle in County Wexford, Ireland and granddaughter of John Jameson, founder of whiskey distillers Jameson & Sons). Marconi had a brother, Alfonso, and a stepbrother, Luigi. Between the ages of two and six, Marconi and his elder brother Alfonso lived with their mother in the English town of Bedford.
Marconi did not attend school as a child and did not go on to formal higher education. Instead, he learned chemistry, math, and physics at home from a series of private tutors hired by his parents. His family hired additional tutors for Guglielmo in the winter when they would leave Bologna for the warmer climate of Tuscany or Florence. Marconi noted an important mentor was professor Vincenzo Rosa, a high school physics teacher in Livorno. Rosa taught the 17-year-old Marconi the basics of physical phenomena as well as new theories on electricity. At the age of 18 back in Bologna Marconi became acquainted with University of Bologna physicist Augusto Righi, who had done research on Heinrich Hertz's work. Righi permitted Marconi to attend lectures at the university and also to use the University's laboratory and library. 
From youth, Marconi was interested in science and electricity. In the early 1890s, he began working on the idea of "wireless telegraphy"—i.e., the transmission of telegraph messages without connecting wires as used by the electric telegraph. This was not a new idea; numerous investigators and inventors had been exploring wireless telegraph technologies and even building systems using electric conduction, electromagnetic induction and optical (light) signalling for over 50 years, but none had proven technically and commercially successful. A relatively new development came from Heinrich Hertz, who, in 1888, demonstrated that one could produce and detect electromagnetic radiation. At the time, this radiation was commonly called "Hertzian" waves, and is now generally referred to as radio waves.
There was a great deal of interest in radio waves in the physics community, but this interest was in the scientific phenomenon, not in its potential as a communication method. Physicists generally looked on radio waves as an invisible form of light that could only travel along a line of sight path, limiting its range to the visual horizon like existing forms of visual signaling. Hertz's death in 1894 brought published reviews of his earlier discoveries including a demonstration on the transmission and detection of radio waves by the British physicist Oliver Lodge and an article about Hertz's work by Augusto Righi. Righi's article renewed Marconi's interest in developing a wireless telegraphy system based on radio waves, a line of inquiry that Marconi noted that other inventors did not seem to be pursuing.
At the age of 20, Marconi began to conduct experiments in radio waves, building much of his own equipment in the attic of his home at the Villa Griffone in Pontecchio (now an administrative subdivision of Sasso Marconi), Italy with the help of his butler Mignani. Marconi built on Hertz's original experiments and, at the suggestion of Righi, began using a coherer, an early detector based on the 1890 findings of French physicist Edouard Branly and used in Lodge's experiments, that changed resistance when exposed to radio waves. In the summer of 1894, he built a storm alarm made up of a battery, a coherer, and an electric bell, which went off when it picked up the radio waves generated by lightning.
Late one night, in December 1894, Marconi demonstrated a radio transmitter and receiver to his mother, a set-up that made a bell ring on the other side of the room by pushing a telegraphic button on a bench. Supported by his father, Marconi continued to read through the literature and picked up on the ideas of physicists who were experimenting with radio waves. He developed devices, such as portable transmitters and receiver systems, that could work over long distances, turning what was essentially a laboratory experiment into a useful communication system.

PB Parivar pay tribute to this great scientist on his 145th birth anniversary. 

Source :-

Subscribe to receive free email updates: